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Finding periodic points from short time series

Stuart Allie and Alistair Mees
Centre for Applied Dynamics and Optimization, University of Western Australia, Nedlands, Western Australia 6907, Austral

~Received 30 October 1996!

We present an algorithm for finding low-order periodic points of chaotic maps from possibly very short time
series. No information about the map other than the time series is used. The method finds all the periodic points
of a piecewise linear approximation of the map. We present examples showing the effectiveness of the method
for the Henon and Ikeda maps and a chaotic electronic circuit, including a ‘‘cycle expansion’’ calculation of
the Hausdorff dimension for the Henon map.@S1063-651X~97!11307-1#
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I. INTRODUCTION

We are interested in estimating low-order periodic poi
of ~possibly chaotic! maps where the only information w
have is a short time series generated by iteration of the m
Many techniques for analyzing chaotic maps require kno
edge of the low-order periodic points@1,2#, but often little is
said about how to obtain them. Knowledge of the perio
points is fundamental to ‘‘periodic orbit theory’’@2#, which
is a much more elegant approach to calculations of dyna
cal invariants than the traditional Monte Carlo methods. P
vious methods relied on knowing the map and/or having v
long time series available@1,3–6#; our method is intended
for use when the map is unknown and only a short ti
series is available. We will find approximate periodic poin
of the true map by finding all the exact periodic points o
given order for a piecewise linear approximation to the m
The partition for the piecewise linear approximation is d
fined by triangulating the data@7#.

II. TRIANGULATION AND APPROXIMATION

First we make some definitions. Forn11 points
v0 , . . . ,vn , in general position inR

n, their convex hull is a
~closed! n-simplexs. That is,

s5H(
i

l iv i : l iPR, l i>0 ; i , and (
i

l i51J .
The pointsv0 , . . . ,vn are called theverticesof s and we
denote the simplex bys5s(v0 , . . . ,vn). LetC be a closed
convex set inRn. G is a triangulationof C if G is a collec-
tion of n simplices whose union isC and the intersection o
two simplices is either the empty set or anm simplex,
m,n. Note that the boundary of ann-simplex s ~for
n.0) consists of (n21) simplices, which we callfacesof
s.

There are many triangulations for a given set of poin
One of the more useful is the Delaunay triangulation@8#,
which has the property that it minimizes the average dia
eter of the simplices. This minimizes the average error in
piecewise linear approximation, as discussed below. The
launay triangulation is discussed in detail in@9# and efficient
algorithms for computing it are described in@10#. Although
easy to calculate, the Delaunay triangulation is not neces
561063-651X/97/56~1!/346~5!/$10.00
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ily the best approximation to the map. Methods such as
‘‘data dependent triangulations’’@11# might be better. How-
ever, in our numerical experiments to date, there has bee
useful difference between the Delaunay and other triang
tions.

We say thatl i5l i(x), i50,1, . . . ,n, are thebarycentric
coordinatesfor x with respect tov i , if

x5(
i

l iv i and 15(
i

l i ,

wherexPs(vo , . . . ,vn). A piecewise linear approximation
to f :Rn→Rn is then given by

f̂ ~x!5(
i

l i f ~v i !.

We note @7# that f̂ is continuous inx; if f is C2 then
f̂ (x)5 f (x)1O(D2), whereD is the diameter ofs and if f is
affine, thenf̂5 f .

Suppose thatf̂ j (x) lies in the simplexskj(v0
kj , . . . ,vn

kj),

with barycentric coordinateslkj5(l0
kj , . . . ,ln

kj)T. We de-
fine the piecewise linear approximation to thej11st iterate
of the map by

f̂ j11~x!5(
i

l i
kj f ~v i

kj !. ~1!

Note that this approximation depends on only thefirst
image of the vertices underf ; we could have used thej th
images of the vertices but this is a significantly worse a
proximation tof j than Eq.~1!.

The point here is that we can model the map itself r
sonably well, but not higher iterates of the map, especia
for chaotic systems. In this sense, iterating the model is m
sensible than trying to model the iterates of the map. Beca
of this, methods for finding periodic points that rely on mo
eling the higher iterates of chaotic maps are in a sense in
ently unreliable. Numerical methods using models of on
the first iterate of the map have been used to estimate
invariant measure of an attractor@12# and the largest
Lyapunov exponent@13#.
346 © 1997 The American Physical Society
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56 347FINDING PERIODIC POINTS FROM SHORT TIME SERIES
III. FINDING APPROXIMATE PERIODIC POINTS

We assume that we have a time seriesX5$xi : xi
PRn; i51, . . . ,t11%. We can take our vertices to b
v i5xi and their imagesf (v i)5xi11 for i51, . . . ,t. If the
set $xi% is a scalar time series embedded using a time-de
embedding@14,15#, thenn21 components of the mapf will
be linear and our approximation is exact for these com
nents.

If the xi are corrupted by noise we need to apply so
form of noise reduction before we look for periodic poin
One way to do this is to modelf from the data and use th
model to give values off (v i) for verticesv i . Examples of
this where we use triangulations to build the model and t
find periodic points are described in@16,17#.

To find a periodic point of periodp, we need to solve

x5 f̂ p~x!, that is, (
i

l i
0v05(

i
l i
p21f ~v i

p21!. ~2!

However, we also require that each intermediate step be
sistent. This means that we require that the barycentric c
dinates of thekth image insk be those used to calculate th
(k11)th image. That is,

(
i

l i
kvk5 f̂ k~x!5(

i
l i
k21f ~v i

k21!, ~3!

in addition to( il i
k51, ;k50, . . . ,p.

The problem now is finding an appropriate sequence
simplices, ski, i50, . . . ,p; kiP$1, . . . ,N% ~we haveN
simplices in our triangulation!, in order to construct Eqs.~2!
and ~3!. We do this by constructing a ‘‘transition matrix’
T, where

Ti j5H 1 if f ~s i !ùs jÞB

0 otherwise,

where i , j51, . . . ,N. Given a starting indexk0, we can re-
cursively searchT for sequences where

Tk0 ,k1Tk1 ,k2•••Tkp21 ,k0
51,

so that the index sequencek0 ,k1 , . . . ,kp21 corresponds to a
sequence of simplices thatmight contain a periodp point.

We have a system of linear equations inp(n11) un-
knowns ~the l i

k) for a period p point in Rn. We have
p(n11) equations so, barring degeneracies, the solutio
unique. In order for it to correspond to an approximate pe
odic point, we require thatl i

k>0, ;k, ; i . The system of
equations is moderately sparse and the sparseness incr
as p increases. In fact there arep(n11)(2n11) nonzero
entries out ofp2(n11)2 in total. In matrix form, we can
write the equations as follows. Let 1m5(1,1, . . . ,1), a row
vector of length m. Let Vi5(v0

i , . . . ,vn
i ) and

f (Vi)5„f (v0
i ), . . . ,f (vn

i )…; these aren3(n11) matrices.
Then we have
y

-

e
.

n

n-
r-

f

is
i-

ses

1
1n11 0 ••• 0

0 1n11 ••• 0

A A A

0 0 ••• 1n11

V0 0 ••• 2 f ~Vp21!

2 f ~V0! V1
••• 0

A A A

0 0 ••• Vp21

2 S l0

A

lp21
D 5S 1pT

0
D ,

~4!

where 0 denotes a zero matrix of appropriate size.
Our algorithm can be described as follows:~1! Find the

set of vertices$v i : i51, . . . ,t% and their images$ f (v i)%. ~2!
Triangulate the vertices giving the collection of simplic
$s i : i51, . . . ,N% and calculate the transition matrixT. ~3!
Choose a periodp. Setm51. ~4! For the starting simplex
sm, do the following: ~i! Recursively searchT to find se-
quences of simplices that might contain periodic points. R
ject sequences that contain simplicess i wherei,m as these
sequences have already been checked.~ii ! For each se-
quence, construct the system of linear equations@Eq. ~4!# and
solve them. If all thel i

k are non-negative, the solution de
fines an approximate periodic point. This point genera
p21 other periodp points by iteration of the approximat
map.~5! Setm←m11. If m<N, return to step 4.

The average volume of a simplex in a triangulation bu
from t vertices scales like 1/t. In d dimensions, the volume
also scales likeed wheree is the diameter of the simplex
Combining these, we havee;t21/d. The accuracy of the
periodic point, defined by accp(x)5i f p(x)2xi , scales as
e2;t22/d. So in R2, the accuracy scales as 1/t, in R3 as
t22/3, and so on. We also expect the accuracy of the perio
point to scale asep. Figure 1 shows the scaling of accp(x)
for differentp andt for the Ikeda map. The points plotted a
averages over each periodp.

For the application of this technique to chaotic time s
ries, we have ignored some subtleties. We have assu

FIG. 1. Mean accuracy vs length of time series for periods 1
6 of the Ikeda map. The dotted line without markers indicates
scaling law given in the text.
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348 56STUART ALLIE AND ALISTAIR MEES
that, ast increases, the additional points are distributed u
formly across the convex hull of the attractor, leading to
simplex volume scaling as 1/t. In fact, the additional points
will be distributed according to the invariant density of t
attractor and the actual scaling will depend on how often
trajectory returns to a neighborhood of the fixed point.
particular, points in frequently visited parts of the attrac
will be approximated better.

Calculating the Delaunay triangulation and findingT both
have complexityO(t2), as does finding the simplex se
quences. For periodp, the number of sequences isO(tep);
however, we make some savings by rejecting previou
checked sequences as described above. This pruning red
the number of sequences by a factor of 1/p. We solve a
linear system of sizep(n11), which is an operation o
O(p3).

To illustrate the time needed, for 100 points of data fro
the Ikeda map, it took 2.925 s to calculateT and a total of
135 s to find all the periodic points up to period 6, of whi
102 s were needed just for period 6. These calculations w
run usingMATLAB on a Silicon Graphics Indy with 100 MHz
MIPS R4000 CPU running IRIX 5.3.

IV. EXAMPLES

Figure 2 shows periodic points from periods 1 to 6 calc
lated from a time series of 500 points of the Ikeda map,

z5x1 iy°d1bzexpS ig2
ia

11uzu2D ,
with a55.4, b50.9, g50.4, andd50.92. Note the excel-
lent agreement with the true periodic points shown. It is t
that, in general, the number of periodic points of the tr
map is not necessarily equal to that for the piecewise lin
approximation. However, for low-order points and sufficie
data, equality will hold. Our numerical experiments indica
that any ‘‘extra’’ approximate periodic points tend to disa
pear with a change in the number of nearby data points
this sense, spurious additional points are unstable and e
detected. Similarly, ‘‘missing’’ periodic points appear, an

FIG. 2. Approximate periodic points for the Ikeda map~circles!
and the true points~crosses!.
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remain, once sufficient data points exist in the neighborho
to enable accurate modeling of the map.

We applied our technique to a time series obtained
numerical integration of equations that describe the cha
dynamics of an electronic circuit@18#. Successive maxima o
one component of the three-dimensional time series w
used as a scalar time series$xi : i51, . . . ,t%, which ~for this
system! corresponds to points on a Poincare´ section for the
flow. This scalar time series is embedded in two dimensi
and we look for periodic points of the map describing t
evolution of these embedded points. Such periodic po
correspond to periodic orbits of the original system. Figur
shows the 500 point data set used and some of the real
approximate periodic points up to period 3. We have n
shown all the points up to period 3 as extracting the perio
orbits from the original system is a somewhat tedious ta
For the points shown we note the good agreement with
approximate points, with the exception of a fixed point~pe-
riod 1! at (21.7,21.7), which our method failed to find. Ou
explanation of this is to observe that there is a gap in the d
around (21.7,21.7) and that the map isextremelycompli-
cated in this region. In other words, there are simply n
enough nearby data points to accurately model that regio

To illustrate one application of our method we calculat
the approximate periodic points, up to period 7, for t
Hénon map

~x,y!°~121.4x21y,0.3x!,

using only 50 data points. These periodic points have b
used to calculate the Hausdorff dimension using the ‘‘cy
expansion’’ method@2#. As we will present details elsewher
of the combination of triangulation approximations and cy
expansions, we give only brief results here. The Hausd
dimension isDH511Ds whereDs is the solution to

05 )
PPP

@12~LP!Ds#,

FIG. 3. Approximate periodic points~circles! and true points
~crosses! up to period 3 for the electronic circuit, calculated usin
the 500 data points shown as dots. The scalar time seriesx( i ) is
embedded with a simple lag-1 time delay embedding inR2 to give
points @x( i ),x( i11)#.
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56 349FINDING PERIODIC POINTS FROM SHORT TIME SERIES
andLP is the absolute value of the contracting~stable! ei-
genvalue of the periodic orbit labeled byP, andP is the set
of all ‘‘prime’’ cycles ~see Ref.@2#!. This infinite product is
truncated to include particular combinations of low-order p
riodic orbits, the so-called ‘‘cycle expansion.’’ Figure
shows the true and approximate periodic points up to pe
7. Figure 5 shows the values ofLP for both the true map and
the approximate map for orbits up to period 7, andDs as a
function of the order of the cycle expansion. Our meth
reproduces the number, positions, and stability of the p
odic points to good accuracy and this is reflected in the g
agreement of the dimension calculation between the true
approximate maps.

We emphasize that the dimension estimates shown in
5 were obtained from only 50 data points with no other
formation about the map being used. The cycle expans
methods enable the calculation of other dynamical invaria
such as the largest Lyapunov exponent and topological
tropy. We have obtained good preliminary results with oth
maps and other invariant quantities.

V. DISCUSSION AND CONCLUSIONS

As our examples illustrate, our method is able to find
low-order period points from very short time series to go

FIG. 4. Approximate periodic points up to period 7 for th
Hénon map~circles! and the true points~crosses!, calculated using
50 data points.
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accuracy with reasonable computational effort. Our imp
mentation is far from optimal and useful improvemen
could be made with a more efficient implementation.

Any method forapproximatingperiodic points will in-
volve a model of some kind. This is usually implicit in th
method; we have chosen to make our model~piecewise lin-
ear over triangulations! explicit. This makes it possible to
perform analysis of the model as if it were the true syste
For example, we can easily calculate the Jacobian at
periodic points, for use with cycle expansions and this w
illustrated with the example of Hausdorff dimension es
mates for the He´non map. It is intended to present a detail
analysis of this model class elsewhere.
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FIG. 5. Top axes show the values ofLP for the periodic orbits
up to period 7 of the He´non map. Circles are the approxima
points, crosses are the true values. The bottom axes s
Ds5Dh21 for cycle expansions up to order 7. The solid line is f
the approximate periodic points, the dashed line is the true m
The dotted line shows the accepted value ofDs'0.274.
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