PHYSICAL REVIEW E VOLUME 56, NUMBER 1 JULY 1997

Finding periodic points from short time series

Stuart Allie and Alistair Mees
Centre for Applied Dynamics and Optimization, University of Western Australia, Nedlands, Western Australia 6907, Australia
(Received 30 October 1996

We present an algorithm for finding low-order periodic points of chaotic maps from possibly very short time
series. No information about the map other than the time series is used. The method finds all the periodic points
of a piecewise linear approximation of the map. We present examples showing the effectiveness of the method
for the Henon and Ikeda maps and a chaotic electronic circuit, including a “cycle expansion” calculation of
the Hausdorff dimension for the Henon m&g1063-651X97)11307-1

PACS numbes): 05.45+b

[. INTRODUCTION ily the best approximation to the map. Methods such as the
“data dependent triangulationg'11] might be better. How-
We are interested in estimating low-order periodic pointsever, in our numerical experiments to date, there has been no
of (possibly chaotit maps where the only information we useful difference between the Delaunay and other triangula-
have is a short time series generated by iteration of the magions.
Many techniques for analyzing chaotic maps require knowl- We say that;=\;(x), i=0,1, ... n, are thebarycentric
edge of the low-order periodic poinit,2], but often little is  coordinatesfor x with respect taw;, if
said about how to obtain them. Knowledge of the periodic
points is fundamental to “periodic orbit theonf2], which
is @ much more elegant approach to calculations of dynami- XZZ Ajv; and 122 i,
cal invariants than the traditional Monte Carlo methods. Pre- ' '
vious methods relied on knowing the map and/or having very . L L
long time series availablgL,3—§; our method is intended WN€T€X € a(vo, - - bn). A piecewise linear approximation
for use when the map is unknown and only a short time®© f:R'—R" is then given by
series is available. We will find approximate periodic points
of the true map by finding all the exact periodic points of a 2oy — e
) : 9 & ero f(x)=2 Nif(v)).
given order for a piecewise linear approximation to the map. .
The partition for the piecewise linear approximation is de-

fined by triangulating the dal]. We note[7] that f is continuous inx; if f is C2 then

?‘(x) =f(x)+O(A?), whereA is the diameter of and iff is
affine, thenf="f.

First we make some definitions. Fon+1 points Suppose that!(x) lies in the simplexa®i(v¥, ... v%),
Vo, - .. Upn, iN general position iR", their convex hull is a 0 "
(closed n-simplexco. That is,

II. TRIANGULATION AND APPROXIMATION

with barycentric coordinateskiz()\ki, . ,)\Ei)T. We de-
fine the piecewise linear approximation to the 1st iterate

of the map by
g= 2| )\iUi: )\iER, )\|>0 V|, andEi )\I:l .

B0 = AN (0N). 1)
The pointsvy, ... v, are called theverticesof o and we o
denote the simplex by=o(vg, ... ,v,). LetC be a closed
convex set irR". G is atriangulationof C if G is a collec- Note that this approximation depends on only first

tion of n simplices whose union i€ and the intersection of image of the vertices unddr, we could have used thgth
two simplices is either the empty set or am simplex, images of the vertices but this is a significantly worse ap-
m<n. Note that the boundary of an-simplex o (for  proximation tof! than Eq.(1).
n>0) consists of i—1) simplices, which we callacesof The point here is that we can model the map itself rea-
. sonably well, but not higher iterates of the map, especially
There are many triangulations for a given set of pointsfor chaotic systems. In this sense, iterating the model is more
One of the more useful is the Delaunay triangulat{&i sensible than trying to model the iterates of the map. Because
which has the property that it minimizes the average diamef this, methods for finding periodic points that rely on mod-
eter of the simplices. This minimizes the average error in oueling the higher iterates of chaotic maps are in a sense inher-
piecewise linear approximation, as discussed below. The Deently unreliable. Numerical methods using models of only
launay triangulation is discussed in detai[ ] and efficient the first iterate of the map have been used to estimate the
algorithms for computing it are described[ih0]. Although invariant measure of an attractqd2] and the largest
easy to calculate, the Delaunay triangulation is not necessakyapunov exponenitl13].
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[Il. FINDING APPROXIMATE PERIODIC POINTS 100

We assume that we have a time seri¥s={x;: X;
eR" i=1,...t+1}. We can take our vertices to be
v;=X; and their imaged(v;)=x;,.41 for i=1,... t. If the
set{x;} is a scalar time series embedded using a time-delay
embeddind 14,15, thenn—1 components of the mapwill
be linear and our approximation is exact for these compo-
nents.

If the x; are corrupted by noise we need to apply some
form of noise reduction before we look for periodic points.
One way to do this is to moddl from the data and use the
model to give values of(v;) for verticesv;. Examples of
this where we use triangulations to build the model and then
find periodic points are described ih6,17). -

To find a periodic point of periogh, we need to solve 10

accuracy
—
© |

3
10’ 10 10

X:fp(x), that is, 2 )\?UOZZ )\ipflf(vipfl)_ 2) FIG. 1. Mean accuracy vs length of time series for periods 1 to
I I 6 of the Ikeda map. The dotted line without markers indicates the
scaling law given in the text.

However, we also require that each intermediate step be con-

sistent. This means that we require that the barycentric coor- | 1n43 0 s 0

dinates of thekth image ino® be those used to calculate the 0 Toiq - 0

(k+1)th image. That is,

)\0
k k_ 7k k—lg, k-1 0 o - Lo : 1;
Z ANjvt=f (X):Z A Tf (i), ©) \/0 0 coe —f(VPTY )\p'il o/

—f(V% V! 0

in addition to=\¥=1, Yk=0,... p. :

_ Th_e probll(em now is fmdmg an appropriate sequence of 0 0 yp-1
simplices, ¢, i=0,...p; kie{l,... N} (we haveN @)

simplices in our tnangulatldnln order to construct Eq$2)

T, where Our algorithm can be described as follow4) Find the
set of verticedv; : i=1, ... t} and their image$f(v;)}. (2)

1 if f(ehNo#2 Triangulate the vertices giving the collection of simplices
Tij= 0 otherwise {c'1i=1,... N} and calculate the transition matrix (3)

Choose a perioqb. Setm=1. (4) For the starting simplex
o™, do the following: (i) Recursively searcA to find se-
wherei,j=1,... N. Given a starting indeko, we can re-  quences of simplices that might contain periodic points. Re-
cursively searchl for sequences where ject sequences that contain simpliegsvherei <m as these
sequences have already been check@d.For each se-
guence, construct the system of linear equatj&us (4)] and
solve them. If all the\ are non-negative, the solution de-
fines an approximate periodic point. This point generates

Thg kg Thy ey Ty g kg~ 1

so that the index sequenkg ky, . .. Kk, correspondstoa 1 other periodp points by iteration of the approximate
sequence of simplices thatight contain a periog point. map.(5) Setm«—m+1. If m<N, return to step 4.
We have a system of linear equations pn+1) un- The average volume of a simplex in a triangulation built

knowns (the \) for a periodp point in R". We have  from t vertices scales like 1/In d dimensions, the volume
p(n+1) equations so, barring degeneracies, the solution igjso scales likee® where e is the diameter of the simplex.
unique. In order for it to correspond to an approximate peri-Combining these, we have~t~'. The accuracy of the
odic point, we require thakf=0, Vk, Vi. The system of periodic point, defined by ag(x)—||fp(x) x|, scales as
equations is moderately sparse and the sparseness increagést~24, So in R?, the accuracy scales ast,lin R® as

as p |ncrease52 In faCt2 there agg(n+1)(2n+1) nonzero =23 and so on. We also expect the accuracy of the periodic
entries out ofp“(n+1) in total. In matrix form, we can point to scale agP. Figure 1 shows the scaling of a¢g)

write the equations as follows. Let,¥(1,1,...,1), arow for differentp andt for the Ikeda map. The points plotted are
vector of length m. Let V'=(vg,...v,) and averages over each peripd
f(V)=(f(vg), . ...f(vy)); these arenx(n+1) matrices. For the application of this technique to chaotic time se-

Then we have ries, we have ignored some subtleties. We have assumed
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FIG. 2. Approximate periodic points for the Ikeda m@pcles

; FIG. 3. Approximate periodic pointéircles and true points
and the true pointécrosses

(crossesup to period 3 for the electronic circuit, calculated using

) N . o _the 500 data points shown as dots. The scalar time sg(igsis
that, ast increases, the additional points are distributed uniembedded with a simple lag-1 time delay embeddin&irto give

formly across the convex hull of the attractor, leading to thepoints[x(i),x(i +1)].

simplex volume scaling astl/In fact, the additional points

will be distributed according to the invariant density of the remain, once sufficient data points exist in the neighborhood
attractor and the actual scaling will depend on how often theo enable accurate modeling of the map.

trajectory returns to a neighborhood of the fixed point. In We applied our technique to a time series obtained by
particular, points in frequently visited parts of the attractornumerical integration of equations that describe the chaotic

will be approximated better. dynamics of an electronic circuil8]. Successive maxima of
Calculating the Delaunay triangulation and findiiidpoth  one component of the three-dimensional time series were

have complexityO(t?), as does finding the simplex se- used as a scalar time series: i=1, ... t}, which (for this

guences. For periogd, the number of sequences@teP); system corresponds to points on a Poincaection for the

however, we make some savings by rejecting previouslflow. This scalar time series is embedded in two dimensions
checked sequences as described above. This pruning reducesl we look for periodic points of the map describing the
the number of sequences by a factor op.1¥Ve solve a evolution of these embedded points. Such periodic points
linear system of sizgp(n+1), which is an operation of correspond to periodic orbits of the original system. Figure 3
o(p3). shows the 500 point data set used and some of the real and

To illustrate the time needed, for 100 points of data fromapproximate periodic points up to period 3. We have not
the lkeda map, it took 2.925 s to calculafeand a total of shown all the points up to period 3 as extracting the periodic
135 s to find all the periodic points up to period 6, of which orbits from the original system is a somewhat tedious task.
102 s were needed just for period 6. These calculations weror the points shown we note the good agreement with our
run usingmATLAB on a Silicon Graphics Indy with 100 MHz approximate points, with the exception of a fixed pdioe-

MIPS R4000 CPU running IRIX 5.3. riod 1) at (— 1.7,—1.7), which our method failed to find. Our
explanation of this is to observe that there is a gap in the data
IV. EXAMPLES around (—-1.7,—1.7) and that the map isxtremelycompli-

cated in this region. In other words, there are simply not
Figure 2 shows periodic points from periods 1 to 6 calcu-enough nearby data points to accurately model that region.

lated from a time series of 500 points of the Ikeda map, To illustrate one application of our method we calculated
the approximate periodic points, up to period 7, for the
v s . ia Henon map
Z=X+iy— 6+ Bzexpy iy 1+|Z|2 )

(X,y)—>(1—1.4x*+y,0.%),
with a=5.4, 3=0.9, y=0.4, and5=0.92. Note the excel- . . o .
lent agreement with the true periodic points shown. It is trug'Sing only 50 data points. These periodic points havs been
that, in general, the number of periodic points of the trugused to calculate the Hausdorff dimension using the “cycle
map is not necessarily equal to that for the piecewise linea@XPansion” method2]. As we will present details elsewhere
approximation. However, for low-order points and sufficient©f the combination of triangulation approximations and cycle
data, equality will hold. Our numerical experiments indicate©XPansions, we give only brief results here. The Hausdorff
that any “extra” approximate periodic points tend to disap- dimension isD;=1+ D whereDs is the solution to
pear with a change in the number of nearby data points. In
this sense, _qurious ad_diti_onal poi_nts_ are gnstable and easily 0=[T [1-(Ap)Ps],
detected. Similarly, “missing” periodic points appear, and PeP
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Order of cycle expansion
FIG. 4. Approximate periodic points up to period 7 for the
Henon map(circles and the true pointécrossey calculated using
50 data points.

FIG. 5. Top axes show the values &f for the periodic orbits
up to period 7 of the Hegon map. Circles are the approximate
points, crosses are the true values. The bottom axes show
Ds=Dy—1 for cycle expansions up to order 7. The solid line is for
the approximate periodic points, the dashed line is the true map.
The dotted line shows the accepted valudbgf0.274.

and Ap is the absolute value of the contractifgfable ei-

genvalue of the periodic orbit labeled By andP is the set

of all “prime” cycles (see Ref[2]). This infinite product is

truncated to include particular combinations of low-order pe-accuracy with reasonable computational effort. Our imple-

riodic orbits, the so-called “cycle expansion.” Figure 4 mentation is far from optimal and useful improvements

shows the true and approximate periodic points up to periogould be made with a more efficient implementation.

7. Figure 5 shows the values ﬁfp for both the true map and Any method for approximating periodic points will in-

the approximate map for orbits up to period 7, dddas a  volve a model of some kind. This is usually implicit in the

function of the order of the cycle expansion. Our methodmethod; we have chosen to make our maghétcewise lin-

reproduces the number, positions, and stability of the periear over triangulationsexplicit. This makes it possible to

odic points to good accuracy and this is reflected in the googerform analysis of the model as if it were the true system.

agreement of the dimension calculation between the true ar]dor examp|e, we can eas"y calculate the Jacobian at the

approximate maps. periodic points, for use with cycle expansions and this was
We emphasize that the dimension estimates shown in Figyystrated with the example of Hausdorff dimension esti-

5 were obtained from only 50 data points with no other in-mates for the Figon map. It is intended to present a detailed

formation about the map being used. The cycle expansiognalysis of this model class elsewhere.

methods enable the calculation of other dynamical invariants

such as the largest Lyapunov exponent and topological en-

tropy. We have obtained good preliminary results with other ACKNOWLEDGMENTS

maps and other invariant quantities. _ _
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